0 - Ring Note

hat discovered about using an O-Ring ($1 / 16$ thick) for a piston was gathered from conversations

 with modelers who use them and actual measurements from several engines. What I discovered was that there seemed to be consistancy on the amount of "compression" that the 0 -Ring should have. Compression is defined as the total difference between the diameter of the 0 -Ring Groove and the cylinder
ID. The number is between .004 and .005 .

	Cylinder Bore	O-Ring Piston Groove OD	Difference 	O-Ring Thickness (2 \times O-Ring Dia.)	Total Compression		
Engine 1	.8665	.731	.1355	.140	.0045		
Engine 2	.8752	.740	.1352	.140	.0048		
My Engine		7393	.135	.140	.005		
Target	.8743	.739	.1353	.140	.0047		
Actual	.8743	.739					
				Procedure to the fit the Piston			

First, I bored the cylinder, then honed it. Now I have the Bore Diameter
Second, I turned up the Piston to about . $0005-.001$ less than the bore.
Third, I calculate the Groove OD:
0 -Ring Cross Section Diameter $\mathbf{x} 2$ minus. 005 . I then subtract the value from the Bore Diameter which provides the Groove OD.

Forth, I finish up all the other operations to finish the piston.
Last, I lap the piston until it stays at the top due to air compression and when you lift it off the table it just drops through the cylinder.

Measurements from three engines:

0 -Ring Cross Section Diameter $\times 2$ minus .005 . I then subtract th
$2 \times 3-48$ UNC $\downarrow .200$
Tap Drill \#47
Center on Boss
and wrist pin hole

Bobs O-Ring Piston
Cast Iron casting
Cylinder Bore .8743
O-Ring . $875 \times .0625$
(Actual Dem ID $=.739,0 \mathrm{D}=.879$, Diam=.070)

1/4 Scale Model C Gade by Morrison \& Martin

Model Modifications or New			subassembly Cylinder		
O-Ring Piston		dwg no.			$\underset{1}{\mathrm{REV}} \underset{\mathrm{c}}{ }$
$\begin{aligned} & \text { SCALE } \\ & 3 \text { to } 1 \end{aligned}$	${ }^{\text {date }} 3$ / 12 / 2013			$\begin{aligned} & \text { DRAWN } \\ & \text { © } 2015 \end{aligned}$	ob Nawa ghts Reser

